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ABS TRACT 

Image Reconstruction has been mostly confined to context free linear processes; 
the traditional continuum interpretation of digital array data uses a linear 
interpolator with or without an enhancement filter. In this paper, anti-aliasing 
context dependent interpretation techniques are investigated for image 
reconstruction. Pattern classification is applied to each neighborhood to assign it 
a context class; a different interpolation/filter is applied to neighborhoods of 
differing context. 

It is shown how the context dependent interpolation is computed through 
ensemble average statistics using high resolution training imagery from which the 
lower resolution image array data is obtained (simulation). A quadratic least 
squares (LS) context-free image quality model is described from which the context 
dependent interpolation coefficients are derived. 

It is shown how ensembles of high resolution images can be used to capture the 
a priori spacial character of different context classes. As a consequence, a priori 
information such as the translational invariance of edges along the edge direction, 
edge discontinuity, and the character of corners is captured and can be used to 
interpret image array data with greater spatial resolution than would be expected by 
the Nyquist limit. A Gibb-like artifact associated with this super-resolution is 
discussed. More realistic context dependent image quality models are needed and a 
suggestion is made for using a quality model which now is finding application in 
data compression. 

I. INTRODUCTION 

The work presented in this paper builds upon theory['] that was developed 
further at the Westinghouse Advanced Technology Laboratory and more recent work at 
the Westinghouse Research and Development Center. The goal of this work is to 
develop optimal adaptive methods of  interpretinE image data. By matching the 
interpretation function to the local characteristics of the scene, a context 
dependent interpreter is designed which offers superior performance over context 
independent interpolation functions such as bilinear and cubic convolution. 
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When applied to sampled image data, this context dependent interpolation 
function yields an image which is free of the aliasing artifacts caused by image 
frequency content too high for the sampling frequency. Because of its ability to 
recognize familiar patterns in the sampled data before its interpretation, anti- 
aliasing interpolation selects the interpretation which is most probable given the 
a priori knowledge of context class patterns. This interpretation process is 
sometimes referredto assuper-resolution.[21 The benefits of super-resolution are 

o Provides a method of contextually and artificially increasing the sampling 
frequency from which the known system modulation transfer function can be 
better compensated. 

o Gives a better procedure for image zoom. 

o May lead to adaptive methods of image gathering such as is provided in 
nature through eye movement and neural pre-processing 

In Section 11, a distinction is made between data interpretation vs data 
interpolation. Here, rationale is given for pursuing this work and the basic 
theoretical approach is given. In Section 111, an experiment is described designed 
to show what benefits might be expected from super-resolution. In Section IV, 
results are presented of context dependent interpretation and some of the resulting 
artifacts are discussed. The discussion continues in Section V where a basis for 
future work is provided and a discussion of a more realistic quality model is 
presented. 

11. INTERPRETATION VS INTERPOLATION 

Images are often defined by their fourier content.t3I 

fl d2k 
I(x) = - I, elk-x 

-a (27r)Z 

where x and k are 2-vectors, I(x) is the image and I, is its fourier transform. A 
sampled image data set can be written as the sampling of an image at integer (or 
periodic) valued of x = i. (We select Ax = Ay = 1 throughout this paper.) 

-7r -co 

The sampled "image" generated by frequency k of unit amplitude and that generated by 
k + 27rm for any integer 2-vector m are the same; A fundamental frequency k is 
indistinquishable from any of its aliasing frequencies k + 27rm. A s  a consequence, 
it is really impossible to determine the true frequency content of an image without 
some a priori knowledge. The typical engineering assumption that is made is that 
the true image has no frequencies larger than the Nyquist frequency Ik, I < 7r and 
I ky I  < 7r- 

This assumption is most often wrong and forcing it to be correct by placing a 
smoothing filter in the image gathering process may result in l o s s  of information 
(interpretable spacial resolution). It does simplify the display process, however, 
which is then unambiguous. 



To get a better appreciation of the information loss that is possible, consider 
the images of figures la and lb. Here, a road, pipe, cable or other narrow-object 
illuminates a diagonal set of pixels which if interpreted according to the Nyquist 
assumption would lead to a display (interpretation) consisting of a string of blobs 
one for each diagonal pixel. It is a goal of this work to interpret this data more 
as a human might do as illustrated in Figure lb. What other assumption than Nyquist 
could be used to better accomplish this human-like interpretation of the data? 
Surely it is that almost everywhere in a scene there is some direction of minimal 
spacial frequency, while its orthogonal direction may have a very high frequency 
content; frequencies even higher than the Nyquist frequency. 

By data interpretation,f41 it is meant the generation of  a continuous image 
function I(x) from a sampled subset I(i) taking into consideration the directions in 
the image - data over which there are minimal/maximal changes. Such a process is 
context dependent because the interpolation process depends upon the scene patterns. 
In contrast, by data interpolation it is meant a context free interpolation of the 
data such as is provided by the sinc function interpolation based upon the Nyquist 
assumption. 

I(x,y) = I(i,j)sinc (7rlx-il>sinc(nly-j I ) .  
i , j .  

To implement a context dependent interpretation process, the neighborhood of 
each data sample must be classified into one of many context classes, K. This can 
be done by computing the local gradient and classifying based upon gradient 
magnitude and direction. More complex classes are also possible for images 
containing lines, line ends, corners, etc. For each context class, K, the 
interpolation formula 

I(x,y) = C I(i,j) gK(x-i,y-j) is used where g, is the interpolation 
i 

coefficients (function) matched to the context class. It is anticipated that 
process would be capable of distinguishing the line-like objects of figure 

such a 
1 and 

provide for a more human-like interpretation. The extent to which this is possible 
is the subject matter of this paper. 

111. THE Experiment 

An experiment was designed to determine the extent to which a priori knowledge 
of scene content could be used to improve sampled data interpretability. A real 
high resolution television picture was taken with a CCD camera, digitized to obtain 
a 512x384 digital image, and averaged over sixteen frames to reduce noise. It was 
an image of a white piece of rectangular cardboard tilted by about 30° relative to 
the camera axias (see figure 2). 15x12 blocks of pixels were averaged to obtain 180 
coarse images of the scene, each 32x32 pixels. These 180 coarse images varied in 
the manner (phase) by which the data were averaged from the finer resolution data. 
The scenes were contextually classified as illustrated in Figure 3 ,  and one of the 
coarse images was contextually interpreted to achieve the high resolution image 
shown in Figure 4. The philosophy for deriving the super-resolution interpretation 
functions is subsequently presented. This philosophy uses a least squares image 
quality model which is believed to be at the heart of the Gibb~-like[~’ artifacts 
seen in Figure 4 .  
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The interpreted function for each context class, K, is expressed as 

where N was selected as a 5x5 neighborhood centered at the pixel nearest the point 
X,Y. The fine grid (512x384) was used for discrete points within each pixel. 

The interpolated image was compared to the original (ground truth) data in a 
least squares manner yielding a cost function: 

Here < >K is an ensemble average over all 180 images at all defined context class K 
centers. To obtain the "optimal" interpolation function, we simply take a 
functional variation of C with respect to g, (x-i, y-j) giving a system of normal 
equations which decouple for each subpixel location x,y. The system of normal 
equations is 

For each x,y and K, this is a system of twenty five equations for the contextual 
interpolation coefficients gK(x-i,y-j) to be applied at the 5x5 array in the 
neighborhood of each pixel classified as K to achieve the interpolation value 
I(x,y). The Matrix <I(i,j)I(i',j')> and vector <I(x,y)I(i',j')+ are ensemble 
averages over the 180 processed coarse images and the original fine resolution 
image. 

IV. Results 

The results of this first experiment is shown in Figure 4. A context free bilinear 
interpolated image is shown in Figure 6 .  Clearly, the context dependent process 
retains the translational invariance along the edge and is much "sharper" than the 
context free bilinear interpolator which also shows the staircase aliasing 
artifact. But Figure 4 has a Gibb-like artifact which in itself is a distraction. 
Surely as humans, we wouldn't interpret the coarse data shown in Figure 5 with these 
Gibb-like oscillations! Where do they come from? 

To understand the results of this experiment, all we really need to recognize 
is that the data are noisy. 

A sharp edge discontinuity with a white noise background should have to be 
filtered a-la Weinerf61 if based upon a least squares fidelity criteria. The Weiner 
filter is a very sharp filter and will essentially truncate all spatial frequencies 
whose amplitude is below the noise level while preserving all those above the noise 
level. Figure 7 illustrates the response of an edge function to such a process. 
The high frequency truncation does a best-least squares job but results in the Gibb 
oscillations. It is believed that this Gibb's phenomena is the process at work here 
and results from the implicit assumption that errors near edges are just as 
important as those away from the edge; (least squares criteria). 
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V. Discussion and Future Work 

d@ 

dx 
a2 + h2 - 

The Gibbs artifact can be subdued if a different model to an image quality 
measure is taken. The sharp discontinuity of an edge, together with the least 
squares criteria, places a severe restriction upon the approximating function 
and admits short but large excursions from the edge function. Another image quality 
measure may prove more effective in yielding an edge approximation which is more in 
keeping with a human interpretive approach. It is a quality model which is finding 
application in DPCM data compression. The model considers human toleration to a 
slight "jitter" of the pixel (sometimes called rate distortion). Any error in the 
approximating function is compared not just to the expected noise variance, a 2 ,  but 
to the noise variance plus rate distortion. If @(x) is the approximating function 
to I(x), then (I(x)-@(x))~ must be compared to 

where h is the variance equivalent subpixel jitter. 

>. - 
(I(x) - @ (x)l2 

The modified cost function is then < 
a2 +h2[*)' 

This is a nonlinear functional which in the limit of very low contrast edges (noisy 
edges) leads to the previous least squares measure. But for large contrasts, the 
model compares the error to the slope of the approximating function. In this high 
contrast case, an edge gets approximated by the exponential function @(x) = l-e-"x 
which distributes the representation error uniformly and provides the type of 
solution one might expect a human to choose. This edge function is shown in Figure 
8. It trades off a more uniform transition in exchange for a sharper drop near the 
edge. The solution is forced to be a smooth transition because if 

d @  
- =  0 anywhere, then any error there is given a very large weight. 
dx 
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0 Context-Free (Aliasing) 

0 Context-Dependent (Anti-Aliased) 

as ing) 

Figure l b .  Data Interpretation (Display) 
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Figure 2. Original TV Image - 

Figure 3. Some Pixels Class i f ied  as Corner-Like 
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Figure 4 .  Contexturally Interpreted Coarse Data 

54 

Figure 5. 32 x 32 Coarse Scene of the Rectangle 



Figure 6. Aliasing Artifacts Caused By Context-Free Bilinear Interpolation 
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Figure 7. Gibb-Like Oscillations Caused By Least Square Error Criteria and Sharp 
Truncation in the Fourier Plane 

Figure 8. Exponential Edge Interpretation Based Upon a Modified Image Quality Model 
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